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Summary

This report describes the results of a traveling-wave-tube/

multistage-depressed-collector (TWT-MDC) design study in

support of the Advanced Research Projects Agency/Depart-

ment of Defense (ARPA/DOD) Microwave Power Module

(MPM) Program. The study stressed the possible application

of dynamic and other tapers to the rf output circuit of the

MPM traveling wave tube as a means of increasing the rf and

overall efficiencies and reducing the required beam current

(perveance). The results indicate that a highly efficient, modi-

fied dynamic velocity taper (DVT) circuit can be designed for

the broadband MPM application. The combination of re-

duced cathode current (lower perveance) and increased rf

efficiency leads to (1) a substantially higher overall efficiency

and reduction in the prime power to the MPM, and (2)

substantially reduced levels of MDC and MPM heat dissipa-

tion, which simplify the cooling problems. However, the

selected TWT circuit parameters need to be validated by cold
test measurements on actual circuits.

Introduction

This report summarizes the results of the second stage of a

NASA Lewis traveling-wave-tube/multistage-depressed-

collector (TWT-MDC) design exercise in support of the

Defense Advanced Research Project Agency/Department of

Defense (DARPA/DOD) Microwave Power Module (MPM)

Program (refs. 1 and 2). The results of the first stage of the

exercise (ref. 3) made it clear that lowering the beam current

(and perveance) of the TWT would greatly ease the problems
in obtaining efficient beam collection and MPM cooling,

provided that the required rf output power could be maintained

over the frequency range by raising the rf output efficiency of

the TWT. This became the focus of the second design study,

which concentrated on the evaluation of a dynamic velocity

taper (DVT) and other high rf efficiency tapers for the

broadband MPM traveling wave tube application.

This design study also stressed the multistage depressed

collector as a key element in obtaining the required high

overall TWT efficiencies in the MPM application and

addressed the problem of attaining the required high overall

TWT and collector efficiencies while meeting the stringent

system size constraints and practical high-voltage, thermal,
and mechanical design requirements. Only the interior
dimensions of the collector were considered here; the electrode

outer diameter of 0.3 in. will fit within an overall package one

wavelength thick (0.656 in. at 18 GHz). A somewhat smaller

diameter collector will be needed to fit within the program

goal of a package one-half wavelength thick. However, the

collector diameter needed for the one-half wavelength package

will depend on the method used by the manufacturer tO support
and insulate the collector electrodes, which will be determined

later in the program. A spent beam refocuser (SBR) with

controlled beam expansion, a key element in obtaining

adequately high MDC efficiencies, was added because of the

particular combination of size constraints, and cooling and

high-voltage standoff requirements.

This report describes the procedure for the tapered circuit

TWT design and gives the results of analyses from several

computer models across the entire bandwidth.

Selected Symbols

a

E

Emin

Ka

K,,

F

vo
r/rf

mean helix radius, in.

average disk energy, eV

energy of slowest disk, eV

Pierce interaction impedance at the mean helix

radius,
Pierce interaction impedance integrated over the

beam, f_

average disk radius, in.

cathode voltage, V

rf efficiency

!



TWT Slow Wave Circuit Description

and Performance Results

The first task in the baseline design process was to acquire

input parameters that characterize the TWT across the entire

bandwidth. Chief among these are the helix phase velocity

and the interaction impedance. To obtain these parameters,

we assumed a vaned structure and analyzed it according to the

prescription of reference 4. Our assumed geometry and the

results of the study are shown in figure 1.

The other parameters used in the baseline design are shown
in table I. Note that the current is 125 mA, a reduction of

more than 28 percent from our previous MPM study (ref. 3).

The helix lengths were determined by requiring that at the

lower band edge (1) there be sufficient gain to develop a

bunched beam by the start of the sever, (2) the sever/attenuator

length result in an efficient restart of the signal, and (3) the

overall length produce saturation v,,ith an input power of

30 dBm. The peak magnetic field is V_2 times the Brillouin

field necessary to contain the beam. (The model demands a
smaller value of field than a practical, or "real" TWT, since

it cannot simulate the complex radial and thermal effects of

an actual beam.) The attenuation was assumed to vary linearly

across the bandwidth, from 0.8 dB/in, at 6 GHz to 1.6 dB/in.

at 18 GHz. The rest of the parameters were the same as those
used in reference 3.

Thc baseline parameters were used in Lewis Research

Center's revised Detweiler large-signal code (ref. 5). Saturated

W20*"'/ 0.04 In.

111--0.03in.

0.02 In.

'_-- • r = 6.3

.075 -- 25 i
$

z ,050 I I I 0 -=
6 9 12 15 18

Frequency, GHz

Figure 1 .--Normalized phase velocity and centerllne Interaction

impedance as calculated from reference 4. Geometry shown In

Inset. (Helix pitch, 0.0209 In.-1; c, speed of light; tr, relative
permittivlty.)

TABLE I.-INPUT PARAMETERS FOR THE BASELINE DESIGN

Frequency, GHz ........................................................................... 6 to 18

Average hclix radius, in ................................................................... 0.02

Electron bcam radius, in ............................................................... 0.(}08

Cathode voltagc, kV .......................................................................... 3.5

Beam current, mA ............................................................................. 125

Centcrlinc interaction impedance ........................................ Scc figure I

Normalizcd hclix phase velocity, v/c ................................... See figure I

Centerline peak magnetic flux density, T .................................... 0.2657

Period of periodic permanent magnet (PPM) stack, in ................ 0.2169

Length of input helix, in .................................................................. 0.6t)

Length of attenuator/sever section, in .............................................. 0.30

Length of output helix, in ................................................................ 2.10

SO-- ...... - ............... 1.09.W

I'-........ "-
| Output power

lol I I I I
6 9 12 15 18

Frequency, GHz

Figure 2.--Saturation Input and output power for baseline

design across the bandwidth.

TABLE II.-SATURATED PERFORMANCE FOR BASELINE, DVT,

AND DVT+ DESIGNS

(a) Baseline

Frequency, GHz

6 9 12 15

RF efficiency, percent 20.9 19.3 15.4 10.4

Gain, dB 19.5 29.1 32.3 31.5

(b) DVT

18

7.2

18.9

RF efficiency, percent

Gain, dB

Frequency, GHz

6 9 12 a15 18

22.0 22.1 18.7 14.7 9.1

19.8 29.8 33.1 33.1 20.0

(c) DVT+ =- :

Frequency, GHz61_9 
RFefficiency, percent 24_71 2,412-I 20.1 I t7.2 I 12.5

[Gain, riB 19'4_2 I 35"4 I 32.7 I 23.4
IDVT de_,ign optimized at this frequency.



output power and rf input power, both in dBm, are shown as
functions of frequency in figure 2, and efficiency and gain are

listed in table lI(a). The bowl-shaped drive relationship in

figure 2 is typical of all the studies that were performed and

suggests that tailoring the output of the solid-state driver for

overall gain equalization could be a significant task.

To meet the power requirements of the MPM program, we

then designed a dynamic velocity taper (DVT) for operation
at 15 GHz. We felt that the resultant increase in efficiency

might reverse the sag in the output power curve, but perhaps

at the expense of reduced power at the lower frequencies.

The DVT was designed according to reference 6, wherein

the Pierce velocity parameter (ref. 7) is prescribed by

( K -)1/3
" "tl

with resultant phase velocity variation

v _ 1 + boC

v o 1 + bC

Here K a is the Pierce interaction impedance at the mean

helix radius, Kp is the Pierce interaction impedance integrated
over the beam, b is the Pierce velocity parameter, v is the

phase velocity, C is the Pierce interaction parameter (ref. 7),
and z is the axial distance along the circuit. The zero subscript

refers to quantities at the start of the taper. The cube root of

the impedance ratio is reported at the taper start in the large-

signal program. The parameter rz is given by the slope of a
line segment tangent to the curve of In r/rf at saturation as a
function of axial distance z. The line segment starts at some

taper start z0 chosen to maximize rf efficiency. The parameter
a is also determined so as to maximize rf efficiency. The

procedure for determining rz is illustrated in figure 3.
Best performance occurred with z0 = 2 in., r z = 4.4 in. -I,

and o_ = 0.03. These taper parameters resulted in a nonlinear

reduction in phase velocity over the last inch of output helix

of 17 percent to 16 percent across the 6- to 18-GHz bandwidth.

Efficiency and gain produced by the large-signal code are
shown in table ll(b). Note by comparison with table ll(a) the

desirable result of significantly increased performance across

the entire bandwidth. In particular, at 15 GHz, the design

frequency, output power increased by more than 41 percent.
The favorable results at all frequencies suggest that large

values of drive provide adequate bunching of the beam so that

the DVT can operate efficiently over a wide band of

frequencies.
Recent TWT design experience in a 32-GHz development

program at Lewis (ref. 8) suggested that we try one further
performance-enhancing technique. As we did in that program,

we added a short section of constant pitch to the end of the

DVT. Over its length the extended section continued the

pitch at the end of the DVT. These two sections, considered

as a unit, we call the DVT+.

Optimum performance occurred at 15 GHz, the original

DVT design frequency, when the constant-pitch section was

made 0.15 in. long. Output power that results from the

extension is shown in figure 4 across the band and compared
with the baseline and DVT cases. This figure shows the

dramatic improvement gained in the evolution of the design

concepts. Table II(c) gives rf efficiency and gain ovcr the
band and can be compared directly with the DVT results of

table ll(b). Note that further improvement results throughout
the entire bandwidth, and even the radar MPM requirements

are very nearly met. At 15 GHz, the DVT+ caused output

power to increase by 17 percent over the DVT result; this

100
0

F Slope = (In(nrf)- In(-q0))/(z-z0) ,=Tz= 4.4 _\ .

_el,"" I I I
1.5 2.0 2.5 3.0 2ol I I I I

Axialdistance, z, in. 6 9 12 15 18
Frequency,GHz

Figure3._Plot of In(-qrf)as a functionof axial distance,
operating at saturationat 15 GHz. Slope determines Tz for Figure4.--Output power across the bandwidthfor baseline,
the design of the Dv'r. (Startvalue - z0 ,, 2.0 in.) DVT, and Dv'r+ designs.



0

I
Tunnel wall radius (2a) . I

/-- Bz (r = 0,z)

I

(a) 6 GHz.

"_ Tunnel wall radius (2a)

Bz (r = O,z) _

I

(b) 7 GHz.

"'_ Tunnel wall radius (2a)

/- Bz (r = 0,z)

Tunnel wall radius (2a)

f- Bz (r = 0,z)

m

1 i

0! i .1 .2 I .3 0! i .1 .= [ .3
RF [ Start Axial coordinate, z, in. Input to .RF I Start Axial coordinate, z, in. Input to
output of MDC output of MDC

SBR SBR

(c) 18 GHz. (d) Unmodulated beam•

Figure 5.--Disk outer rad, trajectories and axial magnetic field in spent beam refocuser (SBR) for TWT operating at
saturation at various frequencies. Focusing field in SBR reduced to 60 percent of TWT magnetic field.

represents an increase of nearly 65 percent over the baseline

result. Small adjustments in parameters such as cathode

voltage or beam current could possibly allow the tailoring of

output power to rigorous requirements over the frequency

range.

MDC and Spent Beam Refocuser (SBR)

Models and Design Constraints

The SBR was modeled with the revised Detweiler TWT

computer code so that the effects of beam debunching and

controlled expansion could be analyzed simultaneously. We

felt thai's0me controlled beam expansion was mandatory to

(1) reduce the amount of kinetic power associated with- radial

motion caused by space-charge-driven beam expansion when

the focusing field is removed (power which cannot be recovered

in the MDC), and (2) to make possible the design of an MDC

sufficiently long (z-direction) to provide realistic high-voltage

standoff and cooling.

The scope of the SBR investigation, however, was quite

limited: only SBR's consisting of two or three additional

magnets of reduced but uniform strength, in a continuation of

the periodic permanent magnet (PPM) stack past the rf output,

were considered. SBR field strengths in the range of 0.5 to

0.7 of that of the TWT PPM stack were investigated.

MDC performance was modeled with the Herrmansfeldt

electron trajectory computer program (ref. 9). The MDC

design was produced by iterative performance analyses at the

following three TWT operating frequencies: the frequency

producing maximum Off (7 GHz) and ihe band-edge

frequencies (6 and 18 GHz). Normally, maximum r/rf occurs

near midband. In the present case, however, because of the

100 W requiremen t for the 7- to 11-GHz radar band and the

peculiarities of the DVT+ design, maximum r/r f occurred

very near the lower band edge. The MDC design was largely

optimized at 7 GHz since the TWT output at 6 GHz (108 W)

greatly _exceeds the electronic countermeasures (ECM)



TABLE Ill.--SUMMARY OF SPENT BEAM CHARACTERISTICS AT

END OF REFOCUSER (INPUT TO MDC). TWT OPERATING AT

SATURATION AT VARIOUS FREQUENCIES

(a) Rangc of disk cdgc angles

Frequency, Without beam expansion a I With bcam cxpansion h

GIIz Disk cdgc angle, dcg

6 -14.4 to 8.3 -8.8 to 5.8

7 -21.9 to 10.2 -I 1.2 to 6.0

18 -6.7 to 10.2 -4.3 to 5.9

(b) Average disk edge angle and standard deviation

Frequency, Without beam expansion a With beam cxpansion h

Gltz

6

7

18

Avcrage Standard

angle, devialion

deg

0.54 4.8

0 5.3

.38 4.1

Avcragc Standard

angle, deviation

dcg ._

0.20 3.4

.22 4.0

] .3 2.4

(c) Disk edge radii (normalized to average helix radius a)

Frcqueney, Without beam expansion a With beam cxpansion b

GHz Averagc Maximum Average Maximum

radius, radius radius, radius

7/a (beam cdgc), F/a (bcam cdge),

rmax/a rmax/a

6 0.41 0.70 0.90 1.44

7 .41 .76 .91 1.5 l

18 .40 .73 .88 1.38

aSpcnt beam drifts pant rf oulput in a conlinualion of Ihc PPM _.tack with Iwo addhionat

full-_lrc nglh magnet',.

t'Spcnl beam drifts pa',l rf _mlpul in a continuation of th,: PPM stack with two addilional

(_(I pcrccl_l _.trcng.th magNcl_..

requirement and might well be reduced by a circuit design

change or by controlling the rf input drive.

The secondary-electron-emission (SEE) losses in the MDC

were modeled by injecting secondaries with kinetic energy of

10 eV from the points of impact of the primary charges on the

electrode surfaces back along the angle of incidence (ref. 10).

A SEE yield of 0.5 was assumed. The effects of energetic

secondaries were ignored. The MDC was designed with low-
SEE-yield electrode surfaces (isotropic graphite) in mindl An

optimized high-SEE-yield (copper) electrode MDC would
have its own (different) electrode shapes and operating

potentials.
An MDC active inner diamctcr of 0.30 in. was selected

somewhat arbitrarily as a compromise in an attempt to

minimize the loss in MDC efficiency (with decreasing MDC

radial size) while providing considerable latitude for the high-

voltage, thermal, and mechanical designs. Within this size

constraint the axial length of the MDC was made as large as

possible without significantly compromising the collector

efficiency. Thc four-stage collector design was optimized for

operation of the TWT at saturation and does not provide a

highly depressed (>0.85Vt)) electrode to minimize dissipated
power and power density for the case of zero rf input power.

However, the depression was increased from 0.75V 0 in

reference 3 to nearly 0.8V 0. This combined with the reduced
beam current (125 versus 175 mA) would bring the collector

dissipation down to the level of that for saturated operation

and make the fifth stage proposed in reference 3 unnecessary.

Spent Beam Refocuser Design

and Performance

The SBR design and charge trajectories for 6, 7, and 18

GHz, and the unmodulated (dc) beams are shown in figures

5(a) to 5(d), respectively. Performance is summarized in

table III. The 0.22-in.-Iong SBR consists of two 60-percent-

strength PPM stack magnets. Compared to the same beam (at

the SBR input) drifting in a full-strength continuation of the
PPM stack, it can be seen that the SBR significantly reduces

the range and the standard deviation of the disk edge angles
at the MDC input, and provides a beam (area) expansion of

a factor of nearly 5 (based on ?).
The SBR also provides for conversion of some space-charge

potential energy into axial kinetic energy. This is illustrated

in figure 6 and table IV. Both E- and Emi n are increased

substantially in all cases. Without controlled beam expansion,

some of the potential energy of the beam space charge would

become irrecoverable kinetic energy associated with radial

velocity components of the charges. The spent beam energy

distributions at the input to the MDC are shown in figure 7.

The debunching action is almost complete after drift through

1 l/4 magnetic periods past the rf output (two magnets), with

only relatively small changes in the energy distribution

occurring after that.

1.0 r_,_._ With beam expansion
I _'_ (BsBR/B,IwT. 0.6)
I _ Without beam expansion

o I I ,-_ I
.2 A .6 .8 1.0 1.2

Normallzed voltage, V/V 0

Flgum6._puted spent-beam energyat MIX:: Inputfor
TWT operatlon at saturation at 7 GHz showingrecovery In
spent beam refocuser.



TABLE IV.- DEMONSTRATION OF ENERGY RECOVERY IN
SPENT BEAM REFOCUSER. TWT OPERATING AT SATURATION

AT VARIOUS FREQUENCIES (RESULTS AT END OF SBR)

Without beam expansiona With beam expansionhFrequency,
GHz

Emin, E, Emin, E',

cV cV eV eV

6 882 2311 1258 2485
7 890 2380 1185 2485
18 1478 2728 1712 291 ]

a$1_.'nl beam drifts paxl rf t_utpul in a conlintliltion or the PPM slack wilh two additicmal

full-st tcnglh magnets.

_Spcnl beam dril't_ past rf outpu! in a conttnualion tff Ihc PPM stack with twt) additional

(_ percent slrcngth magnets,

1.0 ............•, Frequency,
GHz

.8-- _ 6
7

............... 18

I|tlll

o I t I I
.2 .4 .6 .8 1.0 1.2

Normalizedvoltage, V/V0

Rgure 7.---Computed spent-beam energyat MDC Input for
TWT operationat saturation at 6, 7, and 18 GHz.

O

1.0 _._ .... A_erfn_l_fUtull.strengthSBR

"8 t _\ (no expanslon)

o I
.2 .4 .6 .8 1.0 1.2

Normalizedvoltage,V/V0

Figure 8.--Computed spent-beamenergy at rf output and
end of full-strengthspent beamrefocuser showing effect of
debunchlng. TWT operatingat saturation at 7 GHz.

The effect of debunching on the spent beam energy

distribution in the absence of controlled beam expansion is

illustrated in figure 8 for the case of 7 GHz. The effect of

debunching without expansion is quite undesirable, with Emi n

being reduced from 0.33V 0 to 0.25V 0. A part of this reduction
in kinetic energy is due to beam compression as it drifts in a

continuation of the PPM stack (from F=0.49a to _=0.41a in

this case). The results at 6 and 18 GHz were quite similar.

MDC Design and Performance

The four-stage, axisymmetric MDC geometry, the applied

potentials, the equipotential lines, and the charge trajectories

are shown in figures 9 to 12 for the saturated rf and

unmodulated (DC) beams. The corresponding TWT-SBR-

MDC power distributions, electrode dissipation, current
distributions, and efficiencies are shown in tables V to VII1.

For convenience each corresponding figure-table pair is shown

on a separate page. The overall TWT efficiency includes a
heater power of 3 W, but uses an overly optimistic (zero helix

current) calculation of electron beam interception. A more

realistic estimate of the interception is given later in this

section. The electrode geometry was designed to maximize
beam collection on or near the MDC sidewalls in order to

provide a short heat conduction path outward for the dissipated
(thermal) power.

The somewhat low MDC efficiencies arc due to the large

velocity spread in the beam and somewhat reduced sorting

efficiency (refs. 11 and 12) caused by the high space-charge
forces in the spent beam, Which lead to significant irrecoverable

energy associated with radial motion. At 6GHz, significant

efficiency is lost because of backstreaming current caused by

the particularly undesirable combination of large negative

angles at fairly large radii and low energy for two of the disks
at the MDC input. This could be reduced or eliminated by

fine tuning the SBR. At 18 GHz the collector efficiency is

limited by the low values of collector depression required for

the high r/r f operating points at 6 and 7 GHz. The required
prime power at 18 GHz, however, is Well below that at 6 or

7 GHz in spite of the low overall efficiency.

In general, the collector efficiencies are comparable to those

in reference 3. The benefits of reduced perveance (0.6 _tP

versus 0.85 !ttP) are offset by the substantially higher r/rf'S

obtained with the DVT+ circuit. The all-important overall

efficiency, however, significantly exceeds even the TWT/five-

stage collector performance in reference 3. The overall

efficiencies are overestimated because the computer model

gives zero or near-zero beam interception. With a more

realistic beam interception of 0.02V0/0, the overall efficiency
would be 51.i, 53.2, and 33.0 percent at 6, 7, and 18 GHz,

respectively. These results suggest that with the DVT+ TWT

circuit design, the goal of 50 percent overall efficiency at and



Electrode

4

Cathode potential, V 0
-3.500 KV /

I
I

3

-2.775 kV

axis of

symmetry

2

-1.750 kV

-1.1 O0 kV

0 V r SBR

analysis

output
.15 .10 .05 0

Radial coordinate, r, in.

Figure 9._Charge trajectories in four-stage depressed

collector with TWT operating at saturation at 7 GHz.

(Active MDC size, 0.30 in. i.d. by 0.43 in. high.)

TABLE V. - COMPUTED PERFORMANCE OF TWT AND FOUR-

STAGE DEPRESSED COLLECTOR AT

SATURATION AT 7 GHz

[Computed trajectories shown in fig. 9.]

(a) TWT-SBR-MDC performance a

Electrode

(fig.9)

Polepiece

I

2

3

4

Voltage Current,

(with respect mA

to ground),

kV

0 0

-1.100 40.4

-i .750 34.3

-2.775 47.7

-3.500 2.3

124.7

Recovered

power,

W

0

44.4

60.0

132.2

8.2

0

25.5

20.8

23.3

2.0

System Efficiency,

component percent

Collector 77.4

Overall 55.4

(c) Power balance in

TWT-SBR-MDC system

Component of power Power,

W

0.8

h121.6

244.9

71.5

Beam interception

Total rf conversion

Recovered power

MDC dissipation

=As._umcs an isotropic-graphilc electrode _condary-cleclron-cmission yield of 0.5.

hlnclndes output power of 1(19.1_¢', a.,*,,'xumed window Io,sscs of 0 W, and circuit losses of 12.5 W.

Dissipated

power,

W

Tolals 244.9 71.5

0a) Computed efficiency



Electrode
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-1.750 kV

-1.1 O0 kV

3L

OV r-SBR

analysis

output
.15 .10 .05 0

Radial coordinate, r, in.

Figure lO.---Charge trajectories in four-stage depressed

collector with TWT operating at saturation at 6 GHz.

(Active size, 0.30 In. I.d. by 0.43 in. high.)

TABLE Vl. - COMPUTED PERFORMANCE OF TWT AND FOUR-

STAGE DEPRESSED COLLECTOR AT

SATURATION AT 6 GHz

[Computed trajcctorics shown in fig. 10.]

(a) TWT-SBR-MDC performance _'

Electrode

(fig. 10)

Polepicce

1

2

3

4

Voltage

(with respect

to ground),
kV

Current,

mA

Recovered

power,

W

0

-I.100

-1.750

-2.775

-3.500

3.1

43.0

28.9

47.7

2.3

(1

47.3

50.6

132.2

8.2

Dissipated

power,

W

4.4

26.7

19.2

27.0

2.6

Tota Is 125.0 238.3 79.9

(b) Compulcd efficiency

Systcm Efficiency,

component percent

Collcctor 74.9 :

Ovcrall 53.2

(c) Power balance in

TWT-SBR-MDC system

Componcnt of power Power,
W

Beam interception 0

Total rf conversion h121.1

Recovered power 238.3

MDC dissipation 79.9

_Assumcs an isolnlpic-graphitc clcctrtKlc _ccondary-eh:ctrtm-cmi_._;ilm licld of 0.5.

hlncludc'-, tlulput f_v,,c r _d- [118. I W, a_'.,u mcd wind(_w tos.'._c:., of I) W, and circuit h m.,.c_ _t" 13.0 W.

: : =:

r
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Figure 11 .---Charge trajectories In four-stage depressed
collector with TWT operating at saturation at 18 GHz.

(Active MDC size, 0.30 in. I.d. by 0.43 in. high.)

TABLE VII. - COM PUTED PERFORMANCE OF TWT AND FOUR-

STAGE DEPRESSED COLLECTOR AT

SATURATION AT 18 GHz

[Computed trajectories shown in fig. I 1 .]

(a) TWT-SBR-MDC performancc a

Electrode

(fig. 11)

Polcpiece

I

2

3

4

Totals

Voltage

(with respect

to ground),

kV

0

-I.100

- 1.750

-2.775

-3.500

Current, Recovered

mA power,

W

0 0

13.3 14.6

39.8 69.7

71.9 199.4

0 0

125.0 283.8

Dissipated

power,

W

0

13.4

27.6

47.6

0

88.7

(b) Computed efficiency

System Efficiency,

component percent

Collector 76.2

Overall 34.8

(c) Power balance in

TWT-SBR-MDC system

Component of power Power,

W

Beam interception 0

Total rf conversion b 65.6

Recovered power 283.8

MDC dissipation 88.7

"Assumes an i_',tr_pic-gra '_hi!c clccln_e _c_mdary-clc,..lmn-cmi_.,.;ion field of 0.5.

blncludes output Ix)wer tff 54.7 W, a._sumcd windrow Ius._.e_, of 11W, and circuitli_, _)f I().t_ W.
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TABLE VIII. - COMPUTED PERFORMANCE OF TWT AND FOUR-

STAGE DEPRESSED COLLECTOR WITH

UNMODULATED (dc) BEAM

[Computed trajectories shown in fig. 12.]

(a) TWT-SBR-MDC performance a

Electrode

(fig. ]2)

Polcpiccc
1

2

3

4

Totals

Vottagc Current,

(with respect mA

to ground),

kV

0 0

-I .100 0

- 1.750 0

-2.775 125.0

-3,500 0

125.0

(b) Computed efficiency

System Efficiency,

component percent

Collector 79.3

Ovcrall

(c) Power balance in

TWT-SBR-MDC system

Component of power

Recovered

power,

W

0

0

0

346.9

0

346.9

Beam interception

Total rf conversion

Recovered power

MDC dissipation

aA_,,umc_- an i'.,tdropic-gntphitc clcctrodc _c,Jndary-clccmm-cmission yield of 11.5.

Power,

W

0

346.9

90.7

Dissipated

power,
W

0

0

0

90.7

0

90.7

0 V r SBR

analysis

output
.15 .10 .05 0

Radial coordinate, r, In.

Figure 12.--Charge trajectories in four-stage depressed
collector with TWT operating with unmodulated (dc) beam.

(Active MDC size, 0.30 in. I.d. by 0.43 in. high.)
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TABLE IX.-SUMMARY OF NASA ESTIMATESOF MICROWAVE
POWER MODULESYSTEM PERFORMANCE FOR TWT WITH

DVT+ AND FOUR-STAGE DEPRESSED COLLECTOR

Beam vohagc, kV
Beam current, mA
rfoutput, W
rf losses, W
Beam interceplion, W
Heater power, W
Collectc,r dissipation, W
Solid state driver input, W
Electronic power conditioning
(EPC) losses, W

TWT efficiency, percent
Microwave power modulc
(MPM) efficiency, percent

Total dissipation, W
Total power in,W

DVT+ hclix

Saturationat
7 GHz

3.5
125
109
12.5

9
3

72
II
24

53
45.2

132
241

Unmodulatcd(dc)
bcam

3.5
125

0
0

4.5
3

91
10
11

120
120

near the maximum-prime-power operating point appears to

be readily achievable even with a four-stage collector.

The goal that the MDC might be made longer to ease heat
transfer and high-voltage standoff difficulties with the reduced

beam current was not realized. The expected beneficial effect

of reduced space charge in the beam was partially offset by

lower spent beam electron velocities due to the higher r/if.
The thermal MDC dissipation, however, has been substantially

reduced compared to the four-stage collector in reference 3,

thus simplifying the MDC cooling problem.

The computed secondary-electron-emission losses for the

worst case (6 GHz) reduced the MDC efficiency from 76.7 to

74.9 percent. For the best case (18 GHz) the losses were

negligible. These losses were significantly smaller than those

in reference 3, possibly because of smaller injection angles
and reduced space-charge-driven bcam expansion. However,

as mentioned previously, the effects of energetic secondary

electrons were ignored entirely. Based on past experience

(ref. 13), a 10- to 12-percent (not percentage point) degradation

in the overall efficiency might be expected by using machined

copper instead of machined isotropic graphite MDC electrode

surfaces (eg., 49 percent instead of 55 percent at 7 GHz). A

preliminary look at the high-voltage, mechanical, and thermal

designs indicates that it should be possible to incorporate
these MDC designs in a practical MPM TWT. However, the

packaged MDC could have a considerably larger axial
dimension than the 0.43-in. active Icngth.

90 percent was assumed. The maximum prime power to the

MPM was 241 W, a significant reduction from the 317 W
estimated in reference 3.

Concluding Remarks

Application of the DVT and DVT+ concepts to the MPM

traveling wave tube were investigated. The combination of

reduced cathode current and increased rf efficiency lead to the

following:

1. Substantially higher overall efficiency and reduction in

the prime power to the TWT

2. Substantially reduced levels of MDC dissipation, which

ease the cooling problem

3. Reduced PPM stack focusing requirements and increased

margin for stability

The results appear to be very promising. However, the

validity of the TWT parameters used (notably, the phase
velocity and impedance as functions of frequency) needs to be

verified by cold test measurements on actual or scaled DVT+
circuits.

This initial design study was aimed at a first-generation

MPM which need not fit within a one-half-wavelength-thick

package. The results suggest that an efficient MDC, using

convcntional, high-vohage standoff, thermal, and mechanical

design and fabrication techniques, can be designed for the

MPM TWT. The overall TWT efficiency goal of 50 percent
for radar applications appears to be readily achievable. A

preliminary look at MDC fabrication and possible electronic-

power-conditioning approaches indicates that the fairly large
number of collector stages considered in this study (i.e., four)

does not represent a significant complication. The improved

efficiency, compared to two and threc stages, leads to

substantially lower prime power requirements and simplifies

the cooling problem. The substantial secondary-electron-

emission losses in the MDC indicate that the use of isotropic

graphite MDC electrodes is highly desirable. This design
study was fairly limited in scope. Some performance

improvements should be possible by fine tuning the TWT,

SBR, and MDC designs.

Lewis Research Center

National Aeronautics and Space Administration
Cleveland, Ohio, November 2, 1992

MPM Performance

A summary of the estimated MPM performance is presented
in table IX. An electronic-power-conditioning efficiency of
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